pass::griewank_function Class Reference

#include <griewank_function.hpp>

Inheritance diagram for pass::griewank_function:
Collaboration diagram for pass::griewank_function:

Public Member Functions

 griewank_function (const arma::uword dimension)
 
double evaluate (const arma::vec &agent) const override
 
- Public Member Functions inherited from pass::problem
arma::vec bounds_range () const noexcept
 
arma::uword dimension () const noexcept
 
 problem (const arma::uword dimension, const double lower_bound, const double upper_bound, const std::string &name)
 
 problem (const arma::vec &lower_bounds, const arma::vec &upper_bounds, const std::string &name)
 
double evaluate_normalised (const arma::vec &normalised_agent) const
 
arma::mat normalised_random_agents (const arma::uword count) const
 
arma::mat normalised_hammersley_agents (const arma::uword count) const
 
arma::mat initialise_normalised_agents (const arma::uword count) const
 

Additional Inherited Members

- Public Attributes inherited from pass::problem
const arma::vec lower_bounds
 
const arma::vec upper_bounds
 
const std::string name
 

Detailed Description

The Griewank function has many widespread local minima, which are regularly distributed.

Its optimal parameter = (0, ..., 0) and optimal function value = 0.

\[ f(x_1 \cdots x_n) = 1 + \frac{1}{4000} \sum_{i=1}^n x^2_i - \prod_{i=1}^n cos(\frac{x_i}{\sqrt{i}}) \]

\[ -600.00 \leq x_i \leq 6.00 \]

\[ \text{minimum at }f(0, \cdots, 0) = 0 \]

Constructor & Destructor Documentation

◆ griewank_function()

pass::griewank_function::griewank_function ( const arma::uword  dimension)
explicit

Initialises a Griewank function with dimension dimensions, lower bounds of -600.0 and upper bounds of 600.0.

Member Function Documentation

◆ evaluate()

double pass::griewank_function::evaluate ( const arma::vec &  agent) const
overridevirtual

Evaluates this problem at agent, which must match the dimensions of this problem.

Implements pass::problem.


The documentation for this class was generated from the following files: